asr/emulator/gba/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
//! Support for attaching to Nintendo Gameboy Advance emulators.
use core::{
cell::Cell,
future::Future,
mem::size_of,
ops::Sub,
pin::Pin,
task::{Context, Poll},
};
use crate::{future::retry, Address, Error, Process};
use bytemuck::CheckedBitPattern;
mod emuhawk;
mod mednafen;
mod mgba;
mod nocashgba;
mod retroarch;
mod vba;
/// A Nintendo Gameboy Advance emulator that the auto splitter is attached to.
pub struct Emulator {
/// The attached emulator process
process: Process,
/// An enum stating which emulator is currently attached
state: Cell<State>,
/// The memory address of the emulated RAM
ram_base: Cell<Option<[Address; 2]>>, // [ewram, iwram]
}
impl Emulator {
/// Attaches to the emulator process
///
/// Returns `Option<Genesis>` if successful, `None` otherwise.
///
/// Supported emulators are:
/// - VisualBoyAdvance
/// - VisualBoyAdvance-M
/// - mGBA
/// - NO$GBA
/// - BizHawk
/// - Retroarch, with one of the following cores: `vbam_libretro.dll`, `vba_next_libretro.dll`,
/// `mednafen_gba_libretro.dll`, `mgba_libretro.dll`, `gpsp_libretro.dll`
pub fn attach() -> Option<Self> {
let (&state, process) = PROCESS_NAMES
.iter()
.find_map(|(name, state)| Some((state, Process::attach(name)?)))?;
Some(Self {
process,
state: Cell::new(state),
ram_base: Cell::new(None),
})
}
/// Asynchronously awaits attaching to a target emulator,
/// yielding back to the runtime between each try.
///
/// Supported emulators are:
/// - VisualBoyAdvance
/// - VisualBoyAdvance-M
/// - mGBA
/// - NO$GBA
/// - BizHawk
/// - Retroarch, with one of the following cores: `vbam_libretro.dll`, `vba_next_libretro.dll`,
/// `mednafen_gba_libretro.dll`, `mgba_libretro.dll`, `gpsp_libretro.dll`
pub async fn wait_attach() -> Self {
retry(Self::attach).await
}
/// Checks whether the emulator is still open. If it is not open anymore,
/// you should drop the emulator.
pub fn is_open(&self) -> bool {
self.process.is_open()
}
/// Executes a future until the emulator process closes.
pub const fn until_closes<F>(&self, future: F) -> UntilEmulatorCloses<'_, F> {
UntilEmulatorCloses {
emulator: self,
future,
}
}
/// Calls the internal routines needed in order to find (and update, if
/// needed) the address of the emulated RAM.
///
/// Returns true if successful, false otherwise.
pub fn update(&self) -> bool {
let mut ram_base = self.ram_base.get();
let mut state = self.state.get();
if ram_base.is_none() {
ram_base = match match &mut state {
State::VisualBoyAdvance(x) => x.find_ram(&self.process),
State::Mgba(x) => x.find_ram(&self.process),
State::NoCashGba(x) => x.find_ram(&self.process),
State::Retroarch(x) => x.find_ram(&self.process),
State::EmuHawk(x) => x.find_ram(&self.process),
State::Mednafen(x) => x.find_ram(&self.process),
} {
None => return false,
something => something,
};
}
let success = match &state {
State::VisualBoyAdvance(x) => x.keep_alive(&self.process, &mut ram_base),
State::Mgba(x) => x.keep_alive(&self.process, &ram_base),
State::NoCashGba(x) => x.keep_alive(&self.process, &mut ram_base),
State::Retroarch(x) => x.keep_alive(&self.process),
State::EmuHawk(x) => x.keep_alive(&self.process, &ram_base),
State::Mednafen(x) => x.keep_alive(&self.process, &mut ram_base),
};
self.state.set(state);
self.ram_base.set(if success { ram_base } else { None });
success
}
/// Converts a GBA memory address to a real memory address in the emulator process' virtual memory space
///
/// Valid addresses range:
/// - from `0x02000000` to `0x0203FFFF` for EWRAM
/// - from `0x03000000` to `0x03007FFF` for IWRAM
pub fn get_address(&self, offset: u32) -> Result<Address, Error> {
match offset {
(0x02000000..=0x0203FFFF) => {
let r_offset = offset.sub(0x02000000);
let [ewram, _] = self.ram_base.get().ok_or(Error {})?;
Ok(ewram + r_offset)
}
(0x03000000..=0x03007FFF) => {
let r_offset = offset.sub(0x03000000);
let [_, iwram] = self.ram_base.get().ok_or(Error {})?;
Ok(iwram + r_offset)
}
_ => Err(Error {}),
}
}
/// Checks if a memory reading operation would exceed the memory bounds of the emulated system.
///
/// Returns `true` if the read operation can be performed safely, `false` otherwise.
const fn check_bounds<T>(&self, offset: u32) -> bool {
match offset {
(0x02000000..=0x0203FFFF) => offset + size_of::<T>() as u32 <= 0x02040000,
(0x03000000..=0x03007FFF) => offset + size_of::<T>() as u32 <= 0x03008000,
_ => false,
}
}
/// Reads any value from the emulated RAM.
///
/// The offset provided is meant to be the same memory address as usually mapped on the original hardware.
/// Valid addresses range:
/// - from `0x02000000` to `0x0203FFFF` for EWRAM
/// - from `0x03000000` to `0x03007FFF` for IWRAM
///
/// Values outside these ranges are invalid, and will make this method immediately return `Err()`.
pub fn read<T: CheckedBitPattern>(&self, offset: u32) -> Result<T, Error> {
match self.check_bounds::<T>(offset) {
true => self.process.read(self.get_address(offset)?),
false => Err(Error {}),
}
}
/// Follows a path of pointers from the address given and reads a value of the type specified from
/// the process at the end of the pointer path.
pub fn read_pointer_path<T: CheckedBitPattern>(
&self,
base_address: u32,
path: &[u32],
) -> Result<T, Error> {
self.read(self.deref_offsets(base_address, path)?)
}
/// Follows a path of pointers from the address given and returns the address at the end
/// of the pointer path
fn deref_offsets(&self, base_address: u32, path: &[u32]) -> Result<u32, Error> {
let mut address = base_address;
let (&last, path) = path.split_last().ok_or(Error {})?;
for &offset in path {
address = self.read::<u32>(address + offset)?;
}
Ok(address + last)
}
}
/// A future that executes a future until the emulator closes.
#[must_use = "You need to await this future."]
pub struct UntilEmulatorCloses<'a, F> {
emulator: &'a Emulator,
future: F,
}
impl<T, F: Future<Output = T>> Future for UntilEmulatorCloses<'_, F> {
type Output = Option<T>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
if !self.emulator.is_open() {
return Poll::Ready(None);
}
self.emulator.update();
// SAFETY: We are simply projecting the Pin.
unsafe {
Pin::new_unchecked(&mut self.get_unchecked_mut().future)
.poll(cx)
.map(Some)
}
}
}
#[doc(hidden)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum State {
VisualBoyAdvance(vba::State),
Mgba(mgba::State),
NoCashGba(nocashgba::State),
Retroarch(retroarch::State),
EmuHawk(emuhawk::State),
Mednafen(mednafen::State),
}
static PROCESS_NAMES: [(&str, State); 7] = [
(
"visualboyadvance-m.exe",
State::VisualBoyAdvance(vba::State::new()),
),
(
"VisualBoyAdvance.exe",
State::VisualBoyAdvance(vba::State::new()),
),
("mGBA.exe", State::Mgba(mgba::State)),
("NO$GBA.EXE", State::NoCashGba(nocashgba::State::new())),
("retroarch.exe", State::Retroarch(retroarch::State::new())),
("EmuHawk.exe", State::EmuHawk(emuhawk::State::new())),
("mednafen.exe", State::Mednafen(mednafen::State::new())),
];